New index formulas as a meromorphic generalization of the Chern-Gauss-Bonnet theorem
نویسندگان
چکیده
Laplace operators perturbed by meromorphic potential on the Riemann and separated type Klein surfaces are constructed and their indices are calculated by two different ways. The topological expressions for the indices are obtained from the study of spectral properties of the operators. Analytical expressions are provided by the Heat Kernel approach in terms of the functional integrals. As a result two formulae connecting characteristics of meromorphic (real meromorphic) functions and topological properties of Riemann (separated type Klein) surfaces are derived.
منابع مشابه
The Gauss-Bonnet-Chern Theorem on Riemannian Manifolds
This expository paper contains a detailed introduction to some important works concerning the Gauss-Bonnet-Chern theorem. The study of this theorem has a long history dating back to Gauss’s Theorema Egregium (Latin: Remarkable Theorem) and culminated in Chern’s groundbreaking work [14] in 1944, which is a deep and wonderful application of Elie Cartan’s formalism. The idea and tools in [14] have...
متن کاملAnalytic and Topological Invariants
We construct skew-adjoint operators associated to nowhere zero vector elds on manifolds with vanishing Euler number. The mod 2 indices of these operators provide potentially new invariants for such manifolds. An odd index theorem for corresponding Toeplitz operators is established. This last result may be viewed as an odd dimensional analogue of the Gauss-Bonnet-Chern theorem. It is well-known ...
متن کاملAnalytic Continuation, the Chern-gauss-bonnet Theorem, and the Euler-lagrange Equations in Lovelock Theory for Indefinite Signature Metrics
We use analytic continuation to derive the Euler-Lagrange equations associated to the Pfaffian in indefinite signature (p, q) directly from the corresponding result in the Riemannian setting. We also use analytic continuation to derive the Chern-Gauss-Bonnet theorem for pseudo-Riemannian manifolds with boundary directly from the corresponding result in the Riemannian setting. Complex metrics on...
متن کاملA Note on Characteristic Classes
This paper studies the relationship between the sections and the Chern or Pontrjagin classes of a vector bundle by the theory of connection. Our results are natural generalizations of the Gauss-Bonnet Theorem.
متن کاملGauss-bonnet-chern Theorem on Moduli Space Zhiqin Lu and Michael R. Douglas
The moduli space of complex structures of a polarized Kähler manifold is of fundamental interest to algebraic geometers and to string theorists. The study of its geometry is greatly enriched by considering the Hodge structure of the underlying manifolds. The moduli space at infinity is particularly interesting because it is related to the degeneration of Kähler manifolds. Even when we know very...
متن کامل